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ABSTRACT
Proton-exchange membrane (PEM) water electrolysis is pivotal for green hydrogen production, necessitating accurate predictive
models to manage their non-linearities and expedite commercial deployment. Understanding degradation mechanisms through
macro-scale modeling and uncertainty quantification (UQ) is crucial for advancing this technology via efficiency enhancement
and lifetime extension. This study primarily utilizes a one-dimensional physics-based model to elucidate the presence of electron
transport within the PEM, another degradation phenomenon, besides gas crossover. This work also applies a machine learning
(ML) algorithm, such as eXtreme Gradient Boosting (XGBoost), to model PEM electrolytic cell (PEMEC) operation based on
a dataset generated from the previously mentioned physics-based model. The ML model excels in predicting the polarization
behavior. Based on this surrogatemodel, UQ and sensitivity analysis are finally employed to enlighten the dependence of PEMECs
performance and Faradaic efficiency on the effective electronic conductivity of PEM, especially when electronic pathways exist
within the membrane and operating at low current densities.

1 Introduction

Hydrogen production plays a key role in energy transition at
national and international levels. European countries are plan-
ning to expand electrolysis capacity up to 52GW by 2030, with the
European Union targeting 40 GW by 2030 and Germany aiming

for 10 GW by the same year [1–3]. A promising approach for
hydrogen production is the use of proton-exchange membrane
electrolytic cells (PEMECs) for water electrolysis as they provide
fast response time and dynamic operations which are essential
for their coupling with intermittently available renewable energy
sources [4, 5]. Additional advantages of PEMECs include their
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possibility for operation at high current densities (> 2 Acm
−2)

and their compact system design [6–8]. Future development of
PEMECs aims to reduce capital expenditure and enhance its
long-term stability over 100,000 h [8–11]. Unfortunately, long-
term stability is primarily challenged by degradation effects in
PEMECs, especially within the membrane-electrode assembly
(MEA), which comprises the membrane and catalyst layers.
Various failuremechanismsmay occur, with catalyst degradation
involving dissolution, passivation, agglomeration, or poisoning
[12–15]. Membrane degradation mechanisms can be categorized
into mechanical, thermal, and chemical degradation [14, 16, 17].

Although studies on PEMEC degradation are fewer compared
to PEM fuel cells (PEMFCs), degradation mechanisms and their
stressors have been widely discussed and investigated exper-
imentally [10]. A widely observed degradation mechanism is
membrane thinning. Radicals like hydrogen peroxide (H2O2)
can be formed as a result of gas crossover, which attack the
ionomer backbone of perfluoroalkyl sulfonic acid membranes
(e.g., Nafion) [10, 14, 16]. Experimental studies indicate that gas
crossover depends on operating conditions. For example, a strong
linear increase in gas crossover has been reported with rising
current density [18]. A model-based study further highlights H2-
in-O2 overshoots in the anode due to instant down steps in current
density [19]. Additionally, temperature (60–80◦C) also affects the
H2-gas crossover, while the gas crossover is triggered by the
acceleration stress test (AST) [16]. Higher temperatures (80◦C)
led to a higher gas crossover, which indicates a performance loss.
Similarly, high temperatures led to increasedmembrane thinning
over time, linked to high gas crossover rates [20]. Radical-induced
chemical degradation of the membrane is intensified by the
Fenton reaction in the presence of radical-forming metal cations,
like Fe3+, as investigated in several studies [16, 21–23].

Mechanical degradation mechanisms in PEMECs include the
formation of pinholes or membrane cracking, which can be
triggered by local temperature or current hotspots andmembrane
drying [6, 12, 24, 25]. The impact of membrane pinholes on
PEMEC performance has been already examined by conducting
efficiency tests on intentionally perforated membranes [26].
Membranes with the largest pinholes exhibited twice the H2-
gas crossover compared to pristine ones. This study underscored
the interdependence of various degradation mechanisms and
their potential to exacerbate each other. Thin membrane designs,
aiming at reducing ionic resistance and improving efficiency,
also contribute to increased mechanical instability and gas
crossover [6, 10]. Performance tests on three different Nafion
membranes (NR212, N115, N117) with thicknesses of 50, 127
and 180 μm. respectively, revealed that the thinnest membrane
(Nafion NR212) exhibited the most significant voltage increase
after 144 h of operation, attributed to severe degradation due to
pinhole formation [27].

A frequently observed but not fully understood degradation effect
is the parasitic current due to electron conduction through the
membrane, leading to lower Faradaic efficiency. One possible
cause of these parasitic currents is mechanical membrane degra-
dation during long-term high-current density operations [7].
Studies have shown that the overall electronic resistance through
the plane decreases over time due to increased short circuit paths,
resulting in a reduced initial slope on the polarization curve

and voltage drops below the thermo-neutral voltage after several
hours of operation at low currents. Mechanical degradation in
PEMFC membranes has also been documented, indicating that
even pristine membrane samples show some inhomogeneity,
initiatingmicro-crack formation during operation [28]. The active
electrode material fills these surface cracks, reducing locally the
distance between the anode and cathode and thereby lowering
electrical resistance. Over time, these cracks can propagate,
ultimately leading to parasitic currents. Membranes still in devel-
opment and lackingmechanical robustness, such as hydrocarbon
ones, can exhibit a higher likelihood of parasitic currents in
PEMECs compared to typical Nafion membranes [29]. The polar-
ization curves from long-term operations show a decreased slope
for the less mechanically robust membranes. This phenomenon
has been attributed to the formation of radicals due to Fe con-
tamination, which leads to parasitic currents over time. A similar
effect has been detected in another study on an NR212membrane
[27], where voltage drops below the thermoneutral voltage at low
current densities (0.01Acm−2) were noted.Mechanically induced
pinholes and cracks in the membrane can lead to increased
gas crossover and parasitic currents [26]. In PEMFCs, electrical
short results in an increased slope of the polarization curve [30].
Further experimental investigations on the influence of parasitic
currents in dynamic PEMFC experiments have been conducted
to assess their feasibility for grid integration [31]. However,
mechanical degradation is not the only cause of parasitic currents.
In PEMECs, for example, electrically conductive iridium catalyst
particles can migrate from the anode across the membrane to
the platinum/carbon cathode, a phenomenon known as catalyst
dissolution and diffusion [32]. This substitution of protons in the
membrane by conductive cations was also observed after operat-
ing an MEA for PEMECs fabricated via reactive spray deposition
for 5000 h [33]. In a very recent study, cross-plane formation
of iridium filaments within the membrane was discovered. This
formation is highly correlated to the interface between the anodic
porous transport layer (aPTL) and anodic catalyst layer (aCL) [34]
and leads to parasitic currents.

Overall, literature studies primarily offer hypotheses for degra-
dation sources [12]. Unfortunately, the complete degradation
pathways are not fully understood yet. This is partly due to
the limitations of electrochemical experiments and analytical
methods [6], which often require ex-situ detection and analysis,
intentional triggering via AST, or costly long-term studies [15, 16,
26]. Therefore, model-based investigations can be instrumental
in understanding degradation pathways, quantifying their impact
on PEMEC performance, and efficiently planning further experi-
ments [4, 35]. As the focus of our paper is on modeling the effects
of parasitic currents on PEMECs, we begin with a summary
of existing literature approaches. A first attempt to further
understand these effects has been already made, having as an
outcome a qualitative model of the overall cell behavior in terms
of electrical equivalent circuits [7]. Moreover, a one-dimensional
(1D) steady-state model has been developed to examine the effect
of gas crossover on PEMECs, proposing that parasitic currents
can be generated due to H2 re-oxidation and O2 reduction, when
H2 and O2 reach the opposite electrodes [36]. Similarly, a zero-
dimensional model has been designed and the computation of
Faradaic efficiency accounts for parasitic current effects [37]. In
the context of PEMFCs, a different study proposed a 1D five-layer
steady-state model incorporating membrane electrical resistance
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FIGURE 1 Schematic overview of the proposed UQ and SA framework (adapted from [39]). An ML algorithm, namely XGBoost was trained with
datasets generated from 1D physics-based simulations. These datasets were created by randomly sampling eight input parameters and by collecting the
corresponding simulation outputs related to the polarization behaviour and Faradaic efficiency of a PEMEC. After acquiring the data and training the
model during the offline phase, the surrogate model was employed in the online phase to quickly predict outputs, enabling fast and efficient UQ and SA.

as a function of mechanical contact pressure [38]. This study
found that increasing the anodic pressure and decreasing the
cathodic one reduces the electrical resistance of the membrane.

In the following sections, we present a 1D steady-state physics-
based model for PEMECs, addressing specifically the effect of
parasitic currents on Faradaic efficiency and cell performance
under varying cell-component parameters. This model neglects
other degradation effects such as gas crossover or membrane
thinning caused by undesired chemical reactions. A dataset
from the aforementioned model is generated and used to train
a machine learning (ML) surrogate model. Its performance is
analyzed to assess the potential of ML in accurately and quickly
predicting the effects of parasitic currents in PEMECs (Figure 1).
Section 2 details the mathematical setup of the physics-based
model, whereas Section 3 the applied ML concepts. Section 4
explores the impact of parameters such as the effective electronic
conductivity within a proton-exchange membrane (PEM) on
a PEMEC affected by parasitic currents. These findings are
further examined through uncertainty quantification (UQ) and
sensitivity analysis (sensitivity analysis (SA)) by means of anML-
based surrogatemodel, providing a valuable foundation for future
investigations into the effects of parasitic currents on PEMECs.

2 Mathematical Model

From the literature overview above, the first attempt to under-
stand parasitic currents within MEAs was made using electrical
equivalent circuits [7] (Figure 2). The circuit I in Figure 2a illus-

trates the cell operation without parasitic currents through the
membrane, resulting in a Faradaic efficiency close to 100%. In this
scenario, no current flows through the cell when the applied volt-
age is below the thermo-neutral voltage (𝑉tn). Once the applied
voltage surpasses𝑉tn, the total current (𝑖t = 𝑖Faradaic) begins to flow
through the cell, and the current–voltage relationship follows the
typical polarization behaviour.

In the presence of parasitic currents through the membrane,
circuit II in Figure 2b describes the behavior of the degraded cell.
When the cell voltage is below 𝑉tn, electronic current initially
flows through short circuit paths in the membrane and is not
used for water splitting, thus reducing hydrogen production. As
the applied voltage increases, more current flows through these
short circuit paths, collectively represented by 𝑅short (comprising
multiple resistors 𝑅s1, 𝑅s2, . . . , 𝑅sn in parallel). Once the applied
voltage exceeds𝑉tn, the water splitting starts, and part of the total
current flows through proton transport within the membrane,
leading to hydrogen generation. 𝑅p represents the polarization
resistance at the electrode/electrolyte interface and 𝑅el accounts
for the total Ohmic losses in the cell for both sets of data.

As opposed to the equivalent circuit representation above, we use
as a basis the 1D physics-based model, which was implemented
in our earlier work [40] and validated against experimental data
[41], and adjusted it to account for short-circuit effects. This
mathematical model was primarily built to support the multi-
modal investigation of a new systematic aging phenomenon of
current pathways which is caused by the cross-plane formation
of iridium filaments within the membrane [34]. The latter study
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FIGURE 2 Equivalent circuit representation of a healthy cell (a) and a degraded one exhibiting parasitic currents through MEA (b).

FIGURE 3 Schematic overview of a five-layer PEMEC: Computa-
tional domain and equations included in the model.

reported that post-operated MEAs exhibited higher parasitic
currents than the pristine ones.

Figure 3 shows a schematic overview of the computation domain
of a five-layer PEMEC and how an electron-conductive pathway
within PEM could look like in two dimensions. As already
mentioned above, themodel is one-dimensional and accounts for
phenomena across the thickness of different layers. Therefore,
it should be treated as a homogenized approach, which aims
to show the cumulative effects of these electron-conductive
pathways. In addition, we do not take into account any reactions
that might occur on the surface of these pathways. We assume
that there is no interaction between the electron transport in
these pathways and the proton one in PEM. The model intends
to give a macroscopic overview of short-circuit effects on the
polarization behavior of PEMECs while assuming stationary and
isothermal transport processes in the porous transport layers
(PTLs), catalyst layers (CLs), and PEM [18, 42]. Oxygen and
hydrogen are produced due to the oxygen and hydrogen evolution
reaction (OER and HER), respectively. They behave as ideal

gases and do not permeate the PEM. The reactions respect
Butler–Volmer kinetics. The material components of MEA are
supposed to be macroscopically homogeneous. The 1D five-layer
MEA model can be described by six in total ordinary differential
equations (ODEs), as summarized in Tables 1 and 2.

From Figure 3, it is clear that different transport mechanisms
dominate in various components of the domain, and discontinu-
ities are also present. Therefore, appropriate boundary conditions
(BCs) must be defined for each neighboring component and
second-order ODE These BCs are listed in Table 3. As previously
mentioned, the membrane is impermeable to all gas species and
water vapor. Consequently, the normal fluxes of gas species and
water vapor are zero at the interface between PEM, aCL, and
cathodic catalyst layer (cCL). Protons and dissolvedwater content
are transported only in the ionomer phase, resulting in zero-flux
BCs at the interfaces between CLs and PTLs. For the electrostatic
potential, it is set to zero at the outer boundary of the cathodic
porous transport layer (cPTL), while either a constant voltage
or current can be applied to the aPTL boundary, as detailed in
Table 3. Continuity is assumed at the remaining inner interfaces.
In thismodel, there are pathways within PEM,which are electron
conductive. Thus, electron transport in PEM is allowed and
illustrated in Figure 4.

In Figure 4, the local potential distribution of electron (𝜙e) and
proton (𝜙p) is presented. The BCs are also included in this
schematic overview. In the catalyst layers, the OER and HER
occur, resulting in the production and consumption of protons
and electrons, respectively. The two equations describing the
potential distribution have already been given in Table 1 (first
two rows). The same holds for the source terms and BCs. Further
details about themathematicalmodel, the parameters used in this
study unless they are given again in the following sections, the
computationmodel, and the UQ and SA framework can be found
in our earlier publication [40]. All studies in Section 4 have been
computed in galvanostatic mode.

Finally, we define Faradaic efficiency [18] since it will be utilized
in our later studies to illustrate better the impact of parasitic
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TABLE 1 Governing equations.

Name Unknown variable Flux Continuity equation

Ohm’s law for electrons 𝜙e 𝑗e = −𝜎effe ∇𝜙e ∇ ⋅ 𝑗e = 𝑆e (1)
Ohm’s law for protons 𝜙p 𝑗p = −𝜎effp ∇𝜙p ∇ ⋅ 𝑗p = 𝑆p (2)
Water transport in ionomer 𝜆 𝑗𝜆 = − 𝐷𝜆

𝑉𝑚
∇𝜆 + 𝜉

F
𝑗p ∇ ⋅ 𝑗𝜆 = 𝑆𝜆 (3)

Fick’s law for water vapour 𝑥H2O
𝑗H2O

= −𝐶𝐷H2O∇𝑥H2O
∇ ⋅ 𝑗H2O

= 𝑆H2O
(4)

Fick’s law for oxygen 𝑥O2
𝑗O2

= −𝐶𝐷O2
∇𝑥O2

∇ ⋅ 𝑗O2
= 𝑆O2

(5)
Fick’s law for hydrogen 𝑥H2

𝑗H2
= −𝐶𝐷H2

∇𝑥H2
∇ ⋅ 𝑗H2

= 𝑆H2
(6)

TABLE 2 Source terms.

Source aPTL aCL PEM cCL cPTL

𝑆e 0 −𝑅a 0 𝑅c 0
𝑆p — 𝑅a 0 −𝑅c —
𝑆𝜆 — 𝑆ad − 𝑆F 0 𝑆ad —
𝑆H2O

0 −𝑆ad — −𝑆ad 0
𝑆O2

0 𝑆F∕2 — — —
𝑆H2

— — — 𝑆F 0

FIGURE 4 Schematic overview of local electron- and proton-
potential distribution within the five layers of the computational domain.

currents on PEMECs. The Faradaic efficiency of H2 can be
represented by the following equation:

𝜂H2
=
𝑁cathode outlet

H2

𝑁theoretical
H2

= 1 −
𝑁crossover

H2
+𝑁recombination

H2
+ 𝑖short

2𝐹

𝐼

2𝐹

, (1)

where 𝑁cathode outlet
H2

is the molar flux of hydrogen at the cathode
outlet, divided by the theoretical molar flux, 𝑁theoretical

H2
, which is

calculated using Faraday’s law. The actual flux of hydrogen is
lower than the theoretical flux, resulting in a Faraday efficiency
below 100%, due to factors such as (i) electrical short currents, like
those through the membrane [7], (ii) hydrogen losses from leaks
and crossover through the membrane [28] and (iii) unwanted

side reactions, such as hydrogen recombining with permeated
oxygen to form water at the cathode. In this work, the fluxes due
to crossover and recombination are neglected since we do not
account for these phenomena at the moment.

3 Surrogate Model Development

The physics-based numerical model discussed in Section 2
involves the computation of six coupled non-linear partial differ-
ential equations. While the intrinsic complexity of solving such
a system of equations leads to a better understanding of the
physics and mechanistic details of the PEMEC, these models
tend to be computationally expensive when we need to evaluate
them repeatedly. Such a situation would arise when we want
to optimize the system to find the best set of parameters for
electrolyzer performance and perform UQ and SA for the entire
system. In these circumstances, one may leverage surrogate
models, primarily used to reduce computational effort. Surrogate
models are simplified versions of the original model, developed
by establishing a relationship between the input and output
variables of the system. One of the ways to formulate this
relationship is by the usage of data-driven models. Data-driven
models are developed by learning the patterns in data and
formulating relationships between input and output variables.

We develop data-based surrogate models in this work to perform
UQ and SA. An XGBoost ML algorithm is deployed to develop
thesemodels since it offers a higher degree of explainability when
compared to artificial neural networks [43]. The model is an
ensemble method that uses a series of sequentially generated
decision trees to make output predictions. The model begins
by fitting weak learners to the negative gradient of the loss
function and develops subsequent trees based on the residuals
of the previous tree. Mathematically, it optimizes the following
objective function for a given dataset (𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1:

Obj =
𝑛∑

𝑖=1
𝐿(𝑦𝑖, �̂�𝑖) +

𝐾∑

𝑘=1
Ω(𝑓𝑘), (2)

where the loss function L(𝑦𝑖, �̂�𝑖) is a squared loss function
expressed by

𝐿(𝑦𝑖, �̂�𝑖) = (𝑦𝑖 − �̂�1)
2 (3)

andΩ(𝑓𝑘) is the regularization term for the 𝑘th tree. The model’s
prediction is made by an additive combination of the output of all
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TABLE 3 Boundary conditions.

Variable aCH/aPTL aPTL/aCL aCL/PEM PEM /cCL cCL/cPTL cPTL/cCH

𝜙e Potentiostatic mode:
𝜙e = 𝑈 Galvanostatic mode: 𝜎effe ∇𝜙e = 𝐼

Continuity Continuity Continuity Continuity 𝜙e = 0

𝜙p — 𝑛 ⋅ 𝑗p = 0 Continuity Continuity 𝑛 ⋅ 𝑗p = 0 —
𝜆 — 𝑛 ⋅ 𝑗𝜆 = 0 Continuity Continuity 𝑛 ⋅ 𝑗𝜆 = 0 —
𝑥H2O

𝑥H2O
= 𝑥𝑎H2O

Continuity 𝑛 ⋅ 𝑗H2O
= 0 𝑛 ⋅ 𝑗H2O

= 0 Continuity 𝑥H2O
= 𝑥𝑐H2O

𝑥O2
𝑥O2

= 𝑥𝑎O2
Continuity 𝑛 ⋅ 𝑗O2

= 0 — — —
𝑥H2

— — — 𝑛 ⋅ 𝑗H2
= 0 Continuity 𝑥H2

= 𝑥𝑐H2

TABLE 4 Range of the input parameters considered to build the
data-driven surrogate models.

Input (Feature vectors) Unit Range of values

𝜖m,aCL — 0.3 − 0.7

𝜖m,cCL — 0.3 − 0.7

𝑙aCL μm 6 − 18

𝑙pem μm 90 − 180

𝑙cCL μm 6 − 18

𝜎ef fe,aCL Sm−1 0.035 − 350

𝜎ef fe,pem Sm−1 10−4 − 10−1

𝜎ef fe,cCL Sm−1 0.035 − 350

the trees

�̂�𝑖 =
𝐾∑

𝑘=1
𝑓𝑘(𝑥𝑖). (4)

The data to train the model were generated from the 1D physics-
based model by varying a range of parameters enlisted in Table 4.
Since our focus in this study is on short-circuit effects, we have
limited our attention to the geometric and electron transport
properties of catalysts and the membrane. A database consisting
of 945,667 data points was generated with the electrolyzer being
operated galvanostatically for current densities, ranging from 0.1
up to 2 Acm−2. The hyperparameters of the ML surrogate model
were set as follows: learning rate = 0.015, maximum tree depth =
6, and number of estimators = 700.

4 Results

We begin our discussions by first performing a one-at-a-time
parameter study to understand the impact of electronic path-
ways within PEM on cell performance and Faradaic efficiency.
Afterwards, we explore the possibility of generation of surrogate
models through machine-learning algorithms. These surrogate
models are robust and ideal for stochastic modeling and our later
UQ and SA studies.

4.1 One-at-a-Time Parameter Study

The deterministic physics-based model gives a detailed insight
into the dependence of the polarization behavior on the electronic

conductivity of possible electron-conductive pathways within
PEM. The parametric study in Figure 5 is performed to determine
their interplay. On the left side of the figure, the short-circuit
influence on the polarization behavior is shown, whereas its
impact on the Faradaic efficiency of hydrogen is presented
on the right side. A huge impact on the polarization curve
is observed when the electronic conductivity of the electronic
pathways gets higher than 10−2

S

m
. Current flows through the

cell even for voltages below open circuit voltage. This is also in
qualitative agreement with the polarization behavior of pristine
and post-operated MEAs, presented in a recent multi-modal
analysis of cross-plane iridium-based filaments [34]. A decrease
in the Faradaic efficiency of hydrogen is also computationally
estimated, as expected, and reported in the literature [27, 29].
In Figure 6a, we plot the through-plane potential distribution
for all layers. Since the differences were not visible enough, we
also present the through-plane potential profile for the anode
side (aPTL, aCL), the PEM, and the cathode side (cPTL, cCL)
separately (Figure 6b–d). Similarly, we plot the distribution of
current density in Figure 6f–h). The influence of the electron-
conductive pathways within PEM becomes evident when the
effective conductivity increases. From Figure 6g, we realize that
not all the current density is employed for water splitting, thus
decreasing the efficiency of our system accordingly.

4.2 Data-Driven Model Performance

From the preceding section, we observe that quantitative and
qualitative insights can be obtained from the 1D PEMEC model
by performing a one-at-a-time parametric study. However, if we
aim to conduct an SA or UQ, we must repeat thousands of
computations. This becomes computationally expensive even for
a 1D model, especially when we are exploring a wide parameter
space with a large number of computations. To accomplish SA
and UQ, we have developed a data-driven surrogate model as
described in Section 3. We now look into the performance of the
developed model.

To develop the model, we initially split the entire data into
training and testing datasets. This division was done using a
split ratio of 80:20 to randomly divide the data. The training
dataset is used to develop the model, whereas the test dataset
is used to calibrate the model’s performance. Figure 7a,b shows
the relationship between the predicted voltage and ground truth
for the training and testing datasets, respectively. We notice a
good fit between the model’s prediction and the actual data
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FIGURE 5 Parameter study for the influence of electronic pathways within PEM on the cell polarization behavior (a) and Faradaic efficiency (c).
The effect on the polarization curve is more evident when we zoom in at lower current densities (b). The higher the electronic conductivity is, the less
efficient PEMECs are. The low 𝜎ef f𝑒,PEM corresponds to a value of 10−4 Sm−1, the medium one to 10−3 Sm−1, the high one to 10−2 Sm−1 and the extremely
high one to 10−1 Sm−1.

obtained from the 1D PEMEC model. To further quantify the
model performance, we define the mean square error (MSE) and
the coefficient of determination (𝑅2)mathematically, as expressed
below:

MSE = 1

𝑛

𝑛∑

𝑗=1
(𝑦𝑗 − �̂�𝑗)

2, (5)

𝑅2 = 1 −
1

𝑛

∑𝑛

𝑗=1(𝑦𝑗 − �̂�𝑗)
2

1

𝑛

∑𝑛

𝑖=1(𝑦𝑗 − �̄�𝑗)2
, (6)

where 𝑛 denotes the number of samples, 𝑦𝑗 represents the ground
truth obtained from the analytical model, �̂� denotes the predicted
values and �̄� is the average value of 𝑦𝑗 . The 𝑅2 value for both the
training and test dataset is greater than 0.99. This implies that
there exists a strong correlation between the surrogate model’s
prediction and the actual values obtained from the physics-
based numerical model. The MSE for the training and test data
are 1.14×10−4 and 1.23×10−5, respectively. Apart from voltage
predictions, we trained the data-driven surrogatemodel to predict
the Faradaic efficiency, as illustrated in Figure 7c,d). The same
set of split ratio and hyperparameters was used to develop this
model.With the 𝑅2 values greater than 0.999 andMSE lesser than
10−6, the model shows good predictive performance for Faradaic
efficiency on both training and test datasets.

To further evaluate the model’s performance, we plot the
polarization and efficiency curves and compare them with the
corresponding curves generated from the 1D numericalmodel. To
make this comparison, we take the following random conditions:
𝜖m,aCL = 0.5, 𝜖m,cCL = 0.3, 𝑙aCL = 6 μm, 𝑙pem = 90 μm, 𝑙cCL = 6 μm,
𝜎effe,aCL = 0.35 Sm−1 and 𝜎effe,cCL = 0.35 Sm−1. The two test cases
differ in their values for the𝜎effe,pem, as shown in Figure 8a. It is to be
noted that these data pointswere not a part of the original training
and test datasets. We see from Figure 8a,b that the predictions
from the surrogate model match well with those obtained by
the numerical simulations. Both the values and the trends in
the variation of voltage and Faradiac efficiency as a function of

current density as captured by the surrogate model. In particular,
we notice for high 𝜎effe,pem the Faradiac efficiency shows a sharp
increase as the current density is increased to 1.0Acm

−2. This
rate of increment in Faradiac efficiency is then damped as the
current density is further increased. The XGBoost model exhibits
its accuracy in capturing this trend. Now that we have developed
and calibrated the accuracy of the surrogatemodel, we deploy this
for performing SA in the next section.

4.3 Stochastic Approach and SA

We have conducted an SA study (Figures 9 and 10) to understand
better the interplay between various input parameters (e.g., the
ionomer volume fraction in CLs, the layer thicknesses of CLs and
PEM, and the effective electric conductivity in CLs and PEM) and
themodel outputs, such as the polarization behavior andFaradaic
efficiency of PEMECs. We assume that these input parameters
behave as random variables and are independent of each other,
and we assign them a uniform probability density function (PDF)
as presented in Table 5. The upper and lower bounds of their
assigned PDFs were chosen based on the references given in
Table 5. The choice of a uniform PDFwas based on other SA stud-
ies [44, 45], which assumed uniform PDFs for the uncertain input
parameters. In the case of adequate experimental observations in
a random sample, we can use these observations to estimate the
PDFs using a histogram, which is a classical method of density
estimation. However, enough observations were not available
for this work, especially for the effective electric conductivities
within the membrane. Therefore, we considered the uniform
PDF a logical assumption for this initial study. In Figure 9, we
present the first-order and total-order Sobol indices (SI) for the
averaged potential.

At this point, we need to remind the readers of the difference
between the first-order and total-order SIs. The total-order SI
accounts for both the sensitivity from first-order effects and
the sensitivity resulting from interactions between a specific
parameter and all other parameters. The sum of the total-order
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FIGURE 6 Comparison of the through-plane potential profiles (a)–(d), the effective protonic conductivity, 𝜎ef fp (e) and the current density
distributions (f)–(h) at 𝐼 = 2.0Acm−2 by assuming different effective electronic conductivity of the electron conductive pathways within PEM.

TABLE 5 Uncertainty range and probability distribution functions of the input parameters, taken into account for the global SA.

Parameter Unit Uncertainty Range Distribution Reference

𝜖m,aCL — [0.3, 0.7]  (0.3, 0.7) [44]
𝜖m,cCL — [0.3, 0.7]  (0.3, 0.7) [44]
𝑙aCL μm [6, 18]  (6, 18) [44]
𝑙pem μm [90, 180]  (90, 180) [42]
𝑙cCL μm [6, 18]  (6, 18) [44]
𝜎effe,aCL Sm−1 [0.035, 350]  (0.035, 350) [42]
𝜎effe,pem Sm−1 [10−4, 10−1]  (10−4, 10−1) [34]
𝜎effe,cCL Sm−1 [0.035, 350]  (0.035, 350) [42]
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FIGURE 7 Comparison between the predicted voltage and Faradiac efficiencies and those obtained from the 1D numerical model for the training
(a,c) and test (b,d) datasets.

FIGURE 8 Polarization curves (a) and Faradiac efficiencies (b) for two different effective electronic conductivities of the electron-conductive
pathways within the membrane.

FIGURE 9 The average cell potential as computed by means of the ML surrogate model. Mean, standard deviation (SD), and 90% PI are presented
on the left side, whereas the total-order and first-order SI of the averaged cell potential over current density are presented on the right side. The 90%
prediction interval (PI) is indicated by the 5th and 95th percentiles, that is, 90% of the cell potential is between 𝑃5 and 𝑃95.
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FIGURE 10 UQ and SA for different features based on the ML surrogate model. The mean, SD, and 90% prediction interval (PI) of cell voltage
over current density are presented on the left (Figure 9a), and the first-order SIs of cell voltage over current density on the right (Figure 9b).

SIs is equal to or greater than one. If no higher-order interactions
exist, the sum of the first-order and total-order SIs will be
equal to one. From Figure 9, we realize that there are slight
differences between the first-order and total-order SIs, which are
more evident in their sums. However, these differences are small,
indicating that higher-order interactions are not crucial for the
interplay between the polarization behavior and the considered
input parameters.

From Figure 9, the most influential parameters for the polariza-
tion behavior are the effective electric conductivities and the PEM
layer thickness. We expect that the effective electric conductivity
of PEM due to the parasitic current pathways is crucial at very
low current densities, as indicated in our earlier work [34] and
confirmed by this analysis and the above parametric study (see
Figures 5 and 8). Furthermore, the PEM thickness is of great
significance as it was also commented on in our earlier study [40].
Another important finding of this analysis is that the impact of
effective electric conductivity in CLs is high. For this study, we
consider a broad uncertainty range for these two input parame-
ters, covering the case for both unsupported and supported CLs
[43]. Unfortunately, very low electric conductivities in CLs have
a negative impact on cell performance.

In Figure 10, we show which input parameter is responsible
for deviations from the mean polarization curve in the range
of investigated current densities. As already described in the
above one-at-a-time parameter study and Figure 5, the effective
electric conductivity of PEM is mostly influential for very low
current densities, lower than 0.5Acm−2. This is also confirmed by
SA in Figure 10. The PEM thickness influences the polarization
behavior in the beginning (current densities below 0.25Acm

−2)
and mostly for higher current densities than 1.0Acm

−2. In
addition, the sum of first-order SIs is way lower than 1.0 for
current densities below 0.25Acm

−2, which indicates an inter-
action between the thickness and effective electric conductivity
of PEM.

5 Conclusions

In this work, we presented a 1D mathematical model that
describes the parasitic current effects besides the main transport

phenomena occurring in a five-layer PEMEC. The implemen-
tation was fully done in Python and based on the solve_bvp
solver from the submodule scipy.integrate, as in our earlier
work [40]. The parasitic current effects in PEMECs are further
assessed using an ML technique, namely XGBoost. Training data
for these algorithms is derived from a 1D physics-based model
of PEMEC. Input features primarily include parameters related
to the material design of the MEA. Statistical error metrics,
such as the MSE, and 𝑅2 are employed to evaluate and compare
the predictive accuracy of the surrogate model on both training
and test datasets. For further analysis and with this surrogate
model as a basis, we employed our already developed framework
for UQ and global SA based on the libraries chaospy [46]
and uncertainpy [47] to study the interplay between input
parameters and model output.

Regarding the key findings of this work, the one-at-a-time param-
eter study revealed that possible electron-conductive pathways
within PEM have an essential impact on cell performance and
Faradaic efficiency. The higher their effective electronic conduc-
tivity is, the less efficient PEMECs are. Additionally, in our SA
studies, we confirmed that the effective electric conductivity of
PEM is mostly influential for very low current densities. The
most influential parameters for the polarization behavior are the
effective electric conductivity of PEM and CLs and the PEM
layer thickness.

Finally, it is important to acknowledge a certain limitation associ-
ated with solely using synthetic data derived from physics-based
simulations to train ML surrogate models. Physical models are
often an idealized representation of real applications. Therefore,
an ML surrogate model, purely trained on synthetic data, can
only replicate the predictive accuracy of the used physicalmodels,
which might fail to generalize real-world conditions. To address
this limitation, we plan to improve the accuracy of trained
surrogate models by employing experimental observations from
cell experiments to train and test ML models. Moreover, due to
the complexity of the real-world applications, a model and its SA
results require extensive amounts of high-quality experimental
data, which can become available nowadays employing high-
throughput experimentation (HTE) [48]. We intend to take
advantage of the available HTE facilities to validate the presented
model in this work, and our simulations in general.
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List of Symbols

Sign Description Unit
Page
list

𝐷𝜆 water diffusivity in the ionomer
phase

m2s−1 5

𝑉𝑚 molar volume of dry electrolyte
per SO−

3 group
m3mol

−1 5

𝜖m,aCL ionomer volume fraction in
aCL

— 7

𝜀m,cCL ionomer volume fraction in
cCL

— 7

𝜆 water content in the ionomer
phase

— 5

𝐅 Faraday constant Cmol
−1 5

𝜙𝑒 electronic potential V 5
𝜙𝑝 protonic potential V 5
𝜎
𝑒𝑓𝑓
𝑝 effective proton conductivity Sm−1 5

𝜎
𝑒𝑓𝑓

𝑒,𝑎𝐶𝐿 effective electron conductivity
in aCL

Sm−1 7

𝜎
𝑒𝑓𝑓

𝑒,𝑐𝐶𝐿 effective electron conductivity
in cCL

Sm−1 7

𝜎
𝑒𝑓𝑓
𝑒,𝑝𝑒𝑚 effective electron conductivity

in PEM
Sm−1 7

𝜎
𝑒𝑓𝑓
𝑒 effective electron conductivity Sm−1 5

𝜉 electro-osmotic drag (EOD)
coefficient

— 5

𝑙𝑎𝐶𝐿 aCL layer thickness m 7
𝑙𝑐𝐶𝐿 cCL layer thickness m 7
𝑙𝑝𝑒𝑚 PEM layer thickness m 7
𝑥H2O

molar fraction of water vapour — 5
𝑥H2

molar fraction of hydrogen — 5
𝑥O2

molar fraction of oxygen — 5
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